Genomic and molecular profiling predicts response to temozolomide in melanoma.
نویسندگان
چکیده
PURPOSE Despite objective response rates of only approximately 13%, temozolomide remains one of the most effective single chemotherapy agents against metastatic melanoma, second only to dacarbazine, the current standard of care for systemic treatment of melanoma. The goal of this study was to identify molecular and/or genetic markers that correlate with, and could be used to predict, response to temozolomide-based treatment regimens and that reflect the intrinsic properties of a patient's tumor. EXPERIMENTAL DESIGN Using a panel of 26 human melanoma-derived cell lines, we determined in vitro temozolomide sensitivity, O(6)-methylguanine-DNA methyltransferase (MGMT) activity, MGMT protein expression and promoter methylation status, and mismatch repair proficiency, as well as the expression profile of 38,000 genes using an oligonucleotide-based microarray platform. RESULTS The results showed a broad spectrum of temozolomide sensitivity across the panel of cell lines, with IC(50) values ranging from 100 micromol/L to 1 mmol/L. There was a significant correlation between measured temozolomide sensitivity and a gene expression signature-derived prediction of temozolomide sensitivity (P < 0.005). Notably, MGMT alone showed a significant correlation with temozolomide sensitivity (MGMT activity, P < 0.0001; MGMT expression, P <or= 0.0001). The promoter methylation status of the MGMT gene, however, was not consistent with MGMT gene expression or temozolomide sensitivity. CONCLUSIONS These results show that melanoma resistance to temozolomide is conferred predominantly by MGMT activity and suggest that MGMT expression could potentially be a useful tool for predicting the response of melanoma patients to temozolomide therapy.
منابع مشابه
MGMT Expression Predicts PARP-Mediated Resistance to Temozolomide.
Melanoma and other solid cancers are frequently resistant to chemotherapies based on DNA alkylating agents such as dacarbazine and temozolomide. As a consequence, clinical responses are generally poor. Such resistance is partly due to the ability of cancer cells to use a variety of DNA repair enzymes to maintain cell viability. Particularly, the expression of MGMT has been linked to temozolomid...
متن کاملCancer Therapeutics Insights Contribution of ATM and ATR to the Resistance of Glioblastoma and Malignant Melanoma Cells to the Methylating Anticancer Drug Temozolomide
The major cytotoxic DNA adduct induced by temozolomide and other methylating agents used in malignant glioma and metastasized melanoma therapy is O-methylguanine (O-MeG). This primary DNA damage is converted by mismatch repair into secondary lesions, which block replication and in turn induce DNA double-strand breaks that trigger the DNA damage response (DDR). Key upstream players in the DDR ar...
متن کاملCompanion Diagnostics and Cancer Biomarkers MGMT Expression Predicts PARP-Mediated Resistance to Temozolomide
Melanoma and other solid cancers are frequently resistant to chemotherapies based on DNA alkylating agents such as dacarbazine and temozolomide. As a consequence, clinical responses are generally poor. Such resistance is partly due to the ability of cancer cells to use a variety of DNA repair enzymes to maintain cell viability. Particularly, the expression of MGMT has been linked to temozolomid...
متن کاملSentinel lymph node biopsy correctly predicts regional lymph node recurrence in trunk malignant melanoma with multiple drainage basins
We report a young male with an initial excisional biopsy report of melanoma of the lower back, referred to our hospital for complete excision and sentinel lymph node (SLN) biopsy. Four peritumoral intradermal Tc-99m phytate injection was performed and SLNs were detected in both axillary and right inguinal regions. On the biopsy only the right axillary SLN was metastatic leading to right axilla...
متن کاملContribution of ATM and ATR to the resistance of glioblastoma and malignant melanoma cells to the methylating anticancer drug temozolomide.
The major cytotoxic DNA adduct induced by temozolomide and other methylating agents used in malignant glioma and metastasized melanoma therapy is O(6)-methylguanine (O(6)-MeG). This primary DNA damage is converted by mismatch repair into secondary lesions, which block replication and in turn induce DNA double-strand breaks that trigger the DNA damage response (DDR). Key upstream players in the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 15 2 شماره
صفحات -
تاریخ انتشار 2009